De novo design of synthetic prion domains.

نویسندگان

  • James A Toombs
  • Michelina Petri
  • Kacy R Paul
  • Grace Y Kan
  • Asa Ben-Hur
  • Eric D Ross
چکیده

Prions are important disease agents and epigenetic regulatory elements. Prion formation involves the structural conversion of proteins from a soluble form into an insoluble amyloid form. In many cases, this structural conversion is driven by a glutamine/asparagine (Q/N)-rich prion-forming domain. However, our understanding of the sequence requirements for prion formation and propagation by Q/N-rich domains has been insufficient for accurate prion propensity prediction or prion domain design. By focusing exclusively on amino acid composition, we have developed a prion aggregation prediction algorithm (PAPA), specifically designed to predict prion propensity of Q/N-rich proteins. Here, we show not only that this algorithm is far more effective than traditional amyloid prediction algorithms at predicting prion propensity of Q/N-rich proteins, but remarkably, also that PAPA is capable of rationally designing protein domains that function as prions in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A promiscuous prion: efficient induction of [URE3] prion formation by heterologous prion domains.

The [URE3] and [PSI(+)] prions are the infections amyloid forms of the Saccharomyces cerevisiae proteins Ure2p and Sup35p, respectively. Randomizing the order of the amino acids in the Ure2 and Sup35 prion domains while retaining amino acid composition does not block prion formation, indicating that amino acid composition, not primary sequence, is the predominant feature driving [URE3] and [PSI...

متن کامل

Prions Affect the Appearance of Other Prions The Story of [PIN+]

Prions are self-propagating protein conformations. Recent research brought insight into prion propagation, but how they first appear is unknown. We previously established that the yeast non-Mendelian trait [PIN(+)] is required for the de novo appearance of the [PSI(+)] prion. Here, we show that the presence of prions formed by Rnq1 or Ure2 is sufficient to make cells [PIN(+)]. Thus, [PIN(+)] ca...

متن کامل

Multiple Gln/Asn-Rich Prion Domains Confer Susceptibility to Induction of the Yeast [PSI+] Prion

The yeast prion [PSI(+)] results from self-propagating aggregates of Sup35p. De novo formation of [PSI(+)] requires an additional non-Mendelian trait, thought to result from a prion form of one or more unknown proteins. We find that the Gln/Asn-rich prion domains of two proteins, New1p and Rnq1p, can control susceptibility to [PSI(+)] induction as well as enhance aggregation of a human glutamin...

متن کامل

Cellular factors important for the de novo formation of yeast prions.

Prions represent an unusual structural form of a protein that is 'infectious'. In mammals, prions are associated with fatal neurodegenerative diseases such as CJD (Creutzfeldt-Jakob disease), while in fungi they act as novel epigenetic regulators of phenotype. Even though most of the human prion diseases arise spontaneously, we still know remarkably little about how infectious prions form de no...

متن کامل

Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.

Prions are infectious protein conformations that are generally ordered protein aggregates. In the absence of prions, newly synthesized molecules of these same proteins usually maintain a conventional soluble conformation. However, prions occasionally arise even without a homologous prion template. The conformational switch that results in the de novo appearance of yeast prions with glutamine/as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 17  شماره 

صفحات  -

تاریخ انتشار 2012